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Supplementary Figure 1: Structure of CAR constructs. (a) The structures of the GD2 CARs, CD19 CARs, and GD2 CARs with mutations/
modifications are shown. Components of the original GD2.28z CAR (based on the 14g2a antibody) are designated in pink. Components of the
original CD19.28z CAR (based on the FMC63 antibody) are designated in blue. Signaling domains are designated in grey. Domains incorporating
point mutations are noted. (b) Structure of ErbB2 and CD22 CAR (HA22 and m971) constructs. The CD22-HA22 CAR incorporates the I1gG, CH,CH,
spacer domain found within the GD2 CAR, while the CD22-m971 and ErbB2 CARs do not. CD28z versions were generated for the CD22-HA22 CAR
and the ErbB2 CAR, while both CD28z and BBz versions were generated for the CD22-m971 scFv.
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Supplementary Figure 2: GD2.28z and CD19.28z CAR T cells have comparable efficacy in vitro but different efficacies in vivo. (a) In vitro
>lchromium release assay of GD2.28z CAR T cells against the GD2+ 143B osteosarcoma cell line. Assay performed 9 days after initial activation.
(b) Tumor growth curves of NSG mice inoculated with 5 x 10° 143B periosteally on day 0O, followed by adoptive transfer of 10’ mock or
transduced GD2.28z CAR T cells on day 3. n=8 mice/group. (c) Tumor growth curves of NSG mice inoculated with 10° 143B periosteally on day 0,
followed by adoptive transfer of 107 mock or transduced GD2.sh.28z CAR (no CH,CH, spacer) T cells on day 3. n=5 mice/group. (d) In vitro
>Ichromium release assay of CD19.28z CAR T cells against the CD19+ NALM6-GL leukemia cell line. Assay performed 9 days after initial
activation. (e) Bioluminescence images from mice inoculated with 5 x 10> NALM6-GL on day 0, followed by adoptive transfer of 107 CD19.28z

CART cells on day 3. * = p<0.05 by Student’s T-test.



Long AH, et al.

a b
100
N\
- Mock - Mock
?é = CD19.28z CAR é - CD19.28z CAR
E — GD2.28z CAR = — GD2.28z CAR
Y—
° —— Co-trans ° —— Co-trans
N X
[ Isotype [ Isotype
0 100 10t 10°
>
CD19 GD2

Supplementary Figure 3: Tumors that outgrow in CD19.28z CAR T cell treated mice lose CD19 expression. NSG mice were inoculated with 10°
143B-CD19 on day 0, followed by adoptive transfer of 107 mock-transduced, CD19.28z CAR, GD2.28z CAR, or co-transduced (Co-trans; expressing
both CD19.28z and GD2.28z CARs) T cells on day 14. Tumors were harvested on day 14 following T cell transfer. Homogenized tumor cells were
analyzed by flow cytometry. Human tumor cells were distinguished from mouse stromal cells and adoptively transferred human T cells by HLA-

ABC+CD45-. (a) CD19 expression and (b) GD2 expression on tumor outgrowths.
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Supplementary Figure 4: CAR T cell activation protocol. PBMCs from healthy donors were activated with anti-CD3/CD28 beads (3:1 bead to cell
ratio) and cultured in 40 IU/mL IL-2 for three days. On days 3 and 4 post activation, T cells were transduced with CAR retroviral supernatants and
cultured in 300 IU/mL IL-2. On day 5, anti-CD3/CD28 beads were removed. T cells were replated at 3 x 10°/ mL with fresh IL-2 every two days.
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Supplementary Figure 5: Impact of IL-2 and IL-7 on exhausted phenotype of GD2.28z CAR T cells. Mock, CD19.28z or GD2.28z CAR T cells were
cultured in different concentrations of IL-2 and IL-7. (@) Exhaustion marker expression was evaluated at day 9 following initial activation. Cells
were cultured in 40 IU/mL IL-2 during activation and switched to 300 IU/mL IL-2 at transduction (red; original protocol), 40 IU/mL IL-2 during
activation and switched to 300 IU/mL IL-2 + 10 ng/mL IL-7 (blue), 40 IU/mL IL-2 throughout in vitro culture (orange) or 10 ng/mL IL-7 throughout
in vitro culture (green). (b) Cytokine production following co-incubation with 143B-CD19 for 24 hours beginning day 9 of ex vivo culture.
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Supplementary Figure 6: Expression of the GD2.28z CAR has a dominant inhibitory effect on CAR T cell function. (a) CAR expression of post-
flow sorted CAR T cells, demonstrating equivalent MFI of CAR receptor expression on co-transduced (Co-trans) vs. single transduced (CD19.28z
CAR and GD2.28z CAR) T cells. (b) Cytokine production of flow-sorted single-transduced and co-transduced CAR T cells, co-incubated with
NALM®6-GL (CD19+GD2-) for 24 hours, beginning on day 9 of ex vivo culture. n=3 replicates/group. T cells with media: <5 pg/mL IL-2, TNF-a and
IFN-y. (c) Purity of CAR expression in co-transduced and single transduced CAR T cells used in in vivo experiments to treat 143B-CD19 bearing

NSG mice. * = p<0.05 by Student’s T-test.
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Supplementary Figure 7: Removing CD19+ cells from culture system does not affect exhausted phenotype of CAR T cells. CAR T cells were
generated from monocyte depleted PBMCs (original protocol) or with T cells isolated from PBMCs via negative magnetic selection. (a) Flow
cytometric quantification of CD19+ cells in the culture system, demonstrating that T cell selection on day 0 led to <0.5% of CD19+ cells in the
culture system throughout ex vivo expansion. (b) Activation and (c) exhaustion marker expression of CAR T cells generated from PBMCs or
isolated T cells. (d) IFN-y production of CAR T cells generated from PBMCs or isolated T cells, co-incubated with 143B-CD19 (CD19+GD2+) for 24

hours beginning on day 9 of ex vivo culture.
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Supplementary Figure 8: GD2 CAR mutants. (a) Surface expression of GD2.mut-28.mut-z CAR (GD2.28z CAR with point mutations introduced in
the signaling domains). Assessed by anti-idiotype staining. (b) Point mutations introduced into the GD2.28z CAR antigen binding domain to
produce the GD2.mutCDR.28z CAR. The complementary determining regions (CDR) of the GD2.28z CAR scFv were identified using the iMGT V-
QUEST tool*’. Five residues with charged or large side chains were identified and mutated to alanines (red), and two amino acids (GA) were
introduced into the CDR1 region of the light chain (underlined). (c) Surface expression the GD2.mutCDR.28z CAR. Assessed by anti-human H+L
antibody, left. Ability to bind anti-idiotype antibody also assessed, right. (d) Surface expression of the GD2.sh.28z CAR (GD2.28z CAR with
removed IgG, CH,CH, spacer and changed scFv linker). Assessed by anti-idiotype staining. (e-f) Surface expression of GD2 CARs with signaling
domain manipulations to include only CD3-{ (GD2.CD3z.only CAR), only CD28 (GD2.CD28.only CAR), or the 4-1BB costimulatory domain

(GD2.BBz CAR). Assessed by anti-idiotype staining.
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Supplementary Figure 9: Activated T cells do not express GD2. (a) qRT-PCR expression of enzymes involved in GD2 synthesis (GD3 synthase and
GM2/GD2 synthase) and degradation (GM1/GD1b/GA1 synthase). (b) Representative flow expression of GD2 on tumors and activated T cells (7
days post activation). (c) Soluble versions of the GD2 and CD19 scFvs were synthesized to evaluate potential binding to cross-reactive antigens
on activated T cells. The scFv regions from the GD2 and CD19 CARs were linked to the CH,CH; domain of rat IgG,, to facilitate detection. 143B-
CD19 tumor cells or activated T cells were incubated in the presence of soluble scFvs and then stained with an anti-rat IgG F(ab’), secondary.
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Supplementary Figure 10: Characterization of CAR-fluorescent protein fusions. (a) CAR-fluorescent protein fusions retain their functionality. T
cells expressing either the untagged of fluorescent protein tagged CARs were co-incubated with 143B-CD19 tumor and degranulation evaluated
by CD107a expression. Degranulation was assessed on day 9 of ex vivo expansion. (b) Fluorescent microscopy images of T cells expressing CAR-
Cerulean protein fusions. T cells expressing Cerulean tagged CARs (cyan) at day 9 following initial activation. Cell membranes were stained with
DiD lipophilic dye (red). (c) FRET signal measured from T cells co-transduced and flow sorted to co-express CAR-Cerulean and CAR-Venus fusion

proteins. * = p<0.05 by Student’s T-test.
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Supplementary Figure 11: Tonic activation and early exhaustion across a spectrum of CARs. (a) Activation marker (day 7) and (b) exhaustion
marker (day 9) expression on T cells expressing an ErbB2.28z CAR (4D5 scFv) or a CD22.28z CAR (m971 scFv derived or HA22 scFv derived)
compared to untransduced-mock, CD19.28z CAR or GD2.28z CAR T cells. Dotted line represents +/- gate defined by isotype controls.
Representative of 3 donors. (c) Quantification of exhaustion marker expression in (b) pooled from 3 unique donors, 9 days following initial
activation. (d) SPICE>> analysis of exhaustion markers expression in (c). (e) AACT g-RT-PCR expression levels of transcription factors associated
with T cell exhaustion, calculated relative to mock-transduced T cell expression levels, 9 days following initial activation. n=3 technical replicates;
representative of 3 donors. * = p<0.05 by Student’s T-test.
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Supplementary Figure 12: Incorporation of CD28 endodomain augments exhaustion whereas 4-1BB endodomain ameliorates exhaustion of
CART cells. (a) Exhaustion marker and (b) exhaustion-associated transcription factor expression in GD2 CAR T cells with isolated signaling
components (either CD28 signaling only or CD3-C signaling only). AACT g-RT-PCR expression levels of transcription factors associated with T cell
exhaustion were calculated relative to mock-transduced T cell expression levels, 9-11 days following initial activation. n=3 technical replicates;
representative of 3 donors. (c) Quantification of T cells within the blood of NSG mice inoculated with 107 NALM6-GL on day 0, followed by
adoptive transfer of 5 x 10® CAR T cells on day 7. Blood T cells were quantified on day 3-18 following adoptive transfer.
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Supplementary Figure 13: 4-1BB costimulatory domain enhances in vivo efficacy and persistence of CD22-m971 CAR T cells. (a)
Bioluminescence images from NSG mice inoculated with 106 NALM6-GL on day 0, followed by adoptive transfer of 1.5 x 107 mock,
CD22-m971.28z or CD22-m971.BBz CAR T cells on day 3. (b) Quantification of bioluminescent signal intensity over time from (a) representing
tumor burden. (c) Quantification of T cells within the blood of mice from (a) on day 12 and 20 following adoptive transfer. n=10 mice/group. (d)
Quantification of T cells within the spleens of mice from (a) on day 24 following adoptive transfer. n=10 mice/group. * = p<0.05 by Student’s T-

test.
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Supplementary Figure 14: GD2 CAR T cells have altered transcriptional profile consistent with exhaustion. Gene set enrichment analysis
(GSEA) was performed using the unfiltered rank list comparing (a) GD2.28z CAR vs CD19.28z CAR T cells, or (b) GD2.BBz CAR vs. CD19.282 CAR T
cells. Analyses were performed against previously reported sets of genes upregulated in exhausted vs. effector T cells (down regulated in
effector vs. exhausted T cells; GSE9650_EFFECTOR_VS_EXHAUSTED_CD8 TCELL_DN) in the murine chronic LCMV model of exhaustion*2. (c) Top
10 enriched gene sets related to hypoxia response identified following GSEA of unfiltered GD2.BBz CAR vs. GD2.28z CAR T cell rank list against
the MSigDB C2 curated gene sets.



